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Summary

A fundamental problem in neuroscience is to characterize the dynamics of spiking from the neurons in
a circuit that is involved in learning about a stimulus or a contingency. A key limitation of current
methods to analyze neural spiking data is the need to collapse neural activity over time or trials, which
may cause the loss of information pertinent to understanding the function of a neuron or circuit. We
introduce a new method that can determine not only the trial when a neuron learns a contingency, but
also the latency of this learning with respect to the onset of a cue within that trial. The backbone of
the method is a separable two-dimensional (2D) random field (RF) model of neural spike rasters, in
which the joint conditional intensity function of a neuron over time and trials depends on two latent
Markovian state sequences that evolve separately but in parallel. We develop efficient statistical and
computational tools to estimate the parameters of the separable 2D RF model, and apply these to data
collected from neurons in the anterior cingulate cortex (ACC) in an experiment designed to characterize
the neural underpinnings of the observational learning of fear in mice. We find that the trial at which
ACC neurons exhibit a conditioned response to the auditory cue (learning trial) is robust across cells,
occurring 3 to 4 trials into the conditioning period. Following the learning trial, we find that the time
with respect to cue onset when we observe a significant change in neural spiking compared to baseline
activity (learning time) varies significantly from cell to cell, occurring between 20 to 600 ms after cue
onset. Overall, the separable 2D RF model provides a detailed characterization of the dynamics of
neural spiking of ACC neurons during observational learning of fear.

Additional Details

The dynamics of neural spiking within and across trials are modeled as a separable 2D RF
xk = xk−1 + εk, εk ∼ N (0, σ2

ε )
zr = zr−1 + δr, δr ∼ N (0, σ2

δ )

log
λk,r∆

1−λk,r∆
= xk + zr

∆Nk,r|xk, xr ∼ Bernoulli(λk,r∆)

where r = 1, · · · , R is the trial index and k = 1, · · · , K the time index within a trial. The 2D separable
RF model expresses the trial-dependent conditional intensity function (CIF) of the neuron in discrete-
time as λk,r∆ ≈ ezr ·exk∆, that is, as the product of a within-trial component exk in units of Hz (spikes/s)
and a unitless quantity ezr . For a given trial r, ezr represents the excess spiking rate at that trial above
what can be expected from the within-trial component. We call ezr the cross-trial component of the
CIF. The within and cross-trial components are functions of two independent state sequences, (xk)

K
k=1

and (zr)
R
r=1, that evolve smoothly according to a first-order random walk. The parameters σ2

ε and σ2
δ ,

which govern the smoothness of (xk)
K
k=1 and (zr)

R
r=1, must be estimated.

Parameter estimation for the 2D separable random field: The evolution of the latent states in
the separable 2D RF cannot be written as a simple random walk in one dimension (e.g. time). The
separable 2D RF is therefore not amenable to classic methods for estimating a state-space model from
point process data [1]. We derive a Monte Carlo Expectation-Maximization algorithm to maximize the
marginal likelihood of the data from the separable 2D RF with respect to the parameters σ2

ε and σ2
δ .

In the E-step, we leverage the Polya-Gamma latent representation of Bernoulli random variables [2]
to generate Gibbs samples from each of the state sequences. In the M-step, we use the Monte-Carlo
samples from the E-step to update the parameters σ2

ε and σ2
δ .

Advantage over non-parametric methods: In addition to the need to collapse spiking activity over
time or trials, two common pitfalls of non-parametric methods (e.g. Wilcoxon rank sum test) are their
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reliance on large sample assumptions to justify comparing neural spiking rates, and the need to correct
for multiple comparisons. The key advantages of our model-based approach stem from the fact that it
yields a characterization of the joint posterior (over all trials and times within a trial) distribution of
the instantaneous rate of spiking of as a function of both time and trials given the data. This not only
obviates the need to correct for multiple comparisons, but also enables us to compare the instantaneous
rate of any two trial time pairs at the millisecond resolution, where non-parametric methods break
down because the sample size is 1.
Detailed changes in neural spiking dynamics: Figure 1 summarizes the result of the 2D separable
RF model applied to 45 2-second-long trials of data from an ACC neuron. The cue occurs 500 ms into a
trial. The left panel shows the raster from this neuron, along with the estimated within-trial (bottom)
and cross-trial (left) components. The within and cross-trial components indicate significant changes
respectively in response to the cue and to conditioning. In the right panel, we quantify using Monte-
Carlo samples the significance of these changes by computing the probability that the spiking rate at
a given time during one of the conditioning trials (trials 16 through 45) is bigger than the baseline
spiking rate at that trial (region A, panel (c)) and the average spiking rate at the same time during the
habituation period (region B, panel (c)). We determine the trial and time pair when the neuron first
shows a conditioned response to the cue (learning trial and time) as the first trial time pair for which
this probability remains consistently above a certain significance level (e.g. 0.9). The unit in this figure
begins to exhibit a conditioned response at trial 20, 614 ms following the cue.
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Figure 1: Characterization of the trial and time when an ACC neuron exhibits a conditioned
response. (a) Raster and posterior estimates of within and across trial effects. The horizontal red

line indicates the beginning of conditioning. The vertical green line indicates cue onset. (b)
Comparison of spiking rate at a given trial and time to the baseline rate at the same trial and the

average rate during habituation at the same time. (c) Regions compared in (b).
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