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Understanding the activity of single neurons in relation to features in the environment is the first step in many
neuroscience studies. We propose a method using algorithm unrolling, an emerging technique in interpretable
deep learning, to deconvolve single-trial neuronal activity into interpretable components. Specifically, we model
the firing rates of single neurons using a set of kernels characterizing neurons’ responses to time-sensitive
sparse events/stimuli. The kernels can be either unique or shared across the population and are weighted by
codes whose amplitude and timing are trial-specific. Our inference results in a deep sparse deconvolutional
encoder and, unlike sequential deep encoder approaches, is based on a generative model; hence, the learned
parameters and encoding are directly interpretable. First, we characterize the performance regime of our
method; this guides end users to understand the model’s accuracy and limitations. Second, we apply our method
to deconvolve overlapping signals in the response of dopaminergic neurons to rewards of varying size. Previous
studies have suggested that reward prediction error responses of dopaminergic neurons are modulated by two
components: salience and value. However, this multiplexing is often ignored or analyzed using ad-hoc windows
to estimate the two contributions. Here, we deconvolve the two factors in an unsupervised manner; one kernel
corresponds to salience whose code is common across reward sizes and another to value whose code changes as
a function of reward amount. We show that the inferred codes are more informative than firing rates estimated
using ad-hoc windows. Third, we study the response of piriform cortex neurons to brief odor pulses delivered
at random time across trials. Based on the learned neural impulse responses, we uncover 3 clusters of response
types across the population. Overall, we propose a novel method to deconvolve into interpretable components
the factors driving neural activity in single trials.
Methods. Given a neuron’s activity, the spikes at trial j are binned at B ms resolution and modeled using the

Fig. 1: Sparse deconvolutional learning (SDL) framework.

natural exponential family (i.e., y j ∼ Poisson(µ j) or y j ∼ Binomial(B,µ j)). We impose a generative model
(Fig. 1) on the neuron’s firing rate and model it as a function of a baseline activity a j and a set of localized
kernels {hk}

K
k=1 characterizing the neuron’s response to events that occur sparsely in time. The events’ onsets

are coded with a sparse code x j,k whose amplitude encodes the strength of the contribution of the kth kernel to
the neuron’s response (i.e., µ j = g(

∑K
k=1 hk ∗ x

j,k + a j) where g is a non-linear function). Although the model
results in an estimate of the neuron’s firing rate on a trial basis, the kernels capture characteristics that are
shared among trials of a neuron or neural population. Given the spike counts y j, we learn the kernels and codes
by minimizing the negative log-likelihood with a sparse prior on the codes, i.e.,

min
{hk}

K
k=1,{x

j,k}Kk=1

−
∑J

j=1
log p(y j | {hk,x

j,k}Kk=1) +
∑K

k=1
λk‖x

j,k‖1 s.t. ‖hk‖2 = 1 for k = 1, . . . ,K (1)

which we call sparse deconvolutional learning (SDL). We use algorithm unrolling [1, 2] to map the problem
into an interpretable deep neural network (Fig. 1) [3]. The inference is a deep sparse deconvolutional encoder
performing proximal gradient descent (i.e., x j,k

t = e j,k · Sαλk

(
x j,k

t−1 + αhk ? (y j − g(
∑K

v=1 hv ∗ x
j,v + a j))

)
where

S is shrinkage, ? the correlation operator, and e j,k an indicator for known events). The combined generative and
inference networks are trained to estimate the sparse events and learn the kernels such that the data likelihood is
maximized.
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Fig. 2: Model characterization.

Model characterization. We generated 100 trials as we
varied background firing rate and bin resolution. In each
trial, 5 similar events happen uniformly at random with a
minimum distance of 100 ms. We set the length of the neu-
ral response to 500 ms, and the response strength (i.e., code
amplitude x j,k) follows a uniform distribution Unif(10, 40).
We model the data using the Binomial distribution. First,
when neither kernel nor event timings are known, kernel
recovery error (i.e.,

√
1 − (cosine similarity)2, darker is bet-

ter) improves as bin size B increases (Fig. 2a). When the
kernel shape is known but events’ timing are unknown, the
event recovery error (i.e., 1− # identified events

# total events ) improves as bin
size and neural activity increase (Fig. 2b). Finally, we show
that when the events’ timing are known, the model is robust to background firing rate and bin size, as measured
in terms of fraction of variance unexplained for code amplitude recovery, regardless of whether the kernels
are learned (Fig. 2c) or known (Fig. 2d). These simulations empower end users to assess the reliability of the
recovered factors given their data statistics.

Fig. 3: Deconvolution of reward prediction error responses in dopaminergic neurons.

Dopamine. We study 40 optogenetically identified dopaminergic neurons recorded in a classical conditioning
task [4]; in surprise trials, a size-varying reward (i.e., 0.1 to 20 µl) was delivered without cue, and in expected
trials, an odor cue preceded reward delivery by 1.5 s (Fig. 3a). Prior work has shown that the reward prediction
error of dopaminergic to a cue or a reward has two overlapping response components: a fast one but largely
unselective in terms of value (salience), followed by a longer response strongly modulated by the value of the cue
or reward [5]. Here, we show that SDL deconvolves these two overlapping kernels without supervision. We learn
three non-negative kernels of length 600 ms using B = 25 ms; one characterizes the neural response to the odor
cue in expected trials (green), and two reward-related kernels which strongly resemble salience (blue) and value
(red, Fig. 3b). Given this decomposition, as an alternative to spike counts from ad-hoc windows, we can use the
code amplitudes in single trials from each kernel as a measure of the neurons’ tuning to reward amount (bottom
row of Fig. 3b, fitted using a Hill function as in [4]). The codes for the odor cue and the salience kernel are
essentially invariant to the reward amount (Fig. 3d left), but they are modulated by context (surprise vs. expected).

Fig. 4: Structure of piriform responses.

The value code is strongly modulated by the reward amount. We
demonstrate using Spearman’s rank correlation that the value code
carries more information about reward amount than the firing rates
over ad-hoc windows (Fig. 3c, i.e., the average across all neurons
(orange marker x) lies under the diagonal line, p=2 · 10−6 and p=0.037,
t-test). This will allow experimenters to infer with higher accuracy than
previous methods the parameters of single neurons for a given dataset.
Furthermore, the value codes (Fig. 3d right) show a diverse sensitivity
to reward size across the neural population, a potential signature of
distributional reinforcement learning in dopaminergic neurons [6].

Olfaction. Next, we apply our method to an olfactory task in which
stimuli occur at random times across trials. At each trial, 50 ms
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Poisson-distributed odor pulses (red dots in Fig. 4a) are delivered. 221 neurons were recorded and isolated from
mice anterior piriform cortex. The data are downsampled to 1 ms resolution and the recorded spikes (black dots
in Fig. 4a) were analyzed with B = 50 ms. We model the odor pulses by sparse codes with known timings and
spike counts as a Poisson process. We learn one kernel for each neuron and identify 3 clusters in the population
based on the kernel shapes (spectral clustering using cosine distances, Fig. 4b-c) highlighting how our method
can be used for exploratory data analysis.
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