Interpretable Unrolled Dictionary Learning Networks

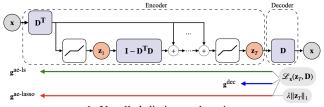
Bahareh Tolooshams and Demba Ba

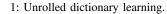
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA

I. INTRODUCTION

The dictionary learning problem, representing data $\boldsymbol{x} \in \mathbb{R}^m$ as a combination of a few atoms from a dictionary $D \in \mathbb{R}^{m \times p}$, has long stood as a popular method for learning representations in statistics and signal processing [1, 2, 3, 4]. The most popular dictionary learning algorithm alternates between sparse coding and dictionary update steps. Sparse coding has been utilized to construct neural architectures through recurrent sparsifying encoders [5], initiating a growing literature on constructing interpretable unrolled networks [6, 7]. We offer the theoretical analysis of unrolled sparse coding. We address the following challenge; the vanilla unrolled sparse coding computes a biased code estimate; this results in a biased estimate of the backward gradient. We reduce this bias and demonstrate unrolled interpretability.

Given x and D, the problem of recovering the sparse coefficients $\boldsymbol{z} \in \mathbb{R}^p$ is referred to as sparse coding, and can be solved through the lasso [8] $\ell_{\boldsymbol{x}}(\boldsymbol{D}) \coloneqq \min_{\boldsymbol{z} \in \mathbb{R}^p} \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}, \boldsymbol{D}) + h(\boldsymbol{z})$ where $\mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}, \boldsymbol{D}) =$ $\frac{1}{2} \| \boldsymbol{x} - \boldsymbol{D} \boldsymbol{z} \|_2^2$, and $h(\boldsymbol{z}) = \lambda \| \boldsymbol{z} \|_1$. The problem aims to recover a dictionary D^* that generates the data, i.e., $x = D^* z^*$ where z^* is sparse. Prior to unrolled networks, gradient-based dictionary learning relied on analytic gradients. With unrolled networks, backpropagation gained attention for parameter estimation [9, 10, 11]¹.





Unrolled dictionary learning is constructed as following: sparse coding is converted into an encoder by unfolding T iterations of ISTA $(\boldsymbol{z}_{t+1} = \Phi(\boldsymbol{z}_t, \boldsymbol{D}) = \mathcal{P}_{\alpha\lambda}(\boldsymbol{z}_t - \alpha \nabla_1 \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}_t, \boldsymbol{D}))) \text{ with } \mathcal{P}_b(v) \triangleq$ $\operatorname{sign}(v) \max(|v| - b, 0)$ [12, 13]. The decoder is $\hat{x} = Dz_T$. We recover \boldsymbol{D}^* by backpropagated gradient (i.e., $\boldsymbol{D}^{(l+1)} = \boldsymbol{D}^{(l)}$ – $\eta g_T^{(l)}$ (See Fig. 1). Backpropagation through the decoder results in the analytic gradient $g_T^{\text{dec}} \triangleq \nabla_2 \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}_T, \boldsymbol{D})$. The gradients $g_T^{\text{ae-lasso}} \triangleq \nabla_2 \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}_T, \boldsymbol{D})$. The gradients $g_T^{\text{ae-lasso}} \triangleq \nabla_2 \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}_T, \boldsymbol{D}) + \frac{\partial \boldsymbol{z}_T}{\partial D} (\nabla_1 \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}_T, \boldsymbol{D}) + \partial h(\boldsymbol{z}_T))$ and $g_T^{\text{ae-ls}} \equiv \nabla_2 \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}_T, \boldsymbol{D}) + \frac{\partial \boldsymbol{z}_T}{\partial D} \nabla_1 \mathcal{L}_{\boldsymbol{x}}(\boldsymbol{z}_T, \boldsymbol{D})$ are computed by back-propagation through the set propagation through the autoencoder using the lasso and least-squares objectives. We show how using $g_T^{\text{ae-ls}}$ is a better gradient estimator to recover D^* . The desired direction is $g^* \triangleq \mathbb{E}_{x \in \mathcal{X}} [\nabla_2 \mathcal{L}_x(z^*, D)]$.

II. MAIN RESULTS

Assumptions: The code z^* is at most s-sparse with the support $S^* = \operatorname{supp}(\boldsymbol{z}^*)$. Given the support, $\boldsymbol{z}_{S^*}^*$ is i.i.d, $\mathbb{E}[\boldsymbol{z}_{(j)}^* \mid j \in S^*] = 0$ and $\mathbb{E}[\boldsymbol{z}_{(S)}^*\boldsymbol{z}_{(S^*)}^{*T} \mid S^*] = \boldsymbol{I}. \boldsymbol{D}^*$ is μ -incoherent with $\mu =$ $\mathcal{O}(\log{(m)})$. $\|\mathbf{D}_{j}^{*}\|_{2} = 1$ and $\|\mathbf{D}^{*}\|_{2} = \mathcal{O}(\sqrt{p/m})$, and $p = \mathcal{O}(m)$. $\forall j \| \boldsymbol{D}_{j}^{(0)} - \boldsymbol{D}_{j}^{*} \|_{2} \leq \delta \text{ and } \| \boldsymbol{D}^{(0)} - \boldsymbol{D}^{*} \|_{2} \leq 2 \| \boldsymbol{D}^{*} \|_{2}. \ \boldsymbol{D}^{(l)} \text{ is }$ μ_l -incoherent and $\|\boldsymbol{D}_i^{(l)} - \boldsymbol{D}_j^*\|_2 \le \delta_l$ with $\delta_l = \mathcal{O}^*(1/\log p)$.

Results: Thm. II.1 provides an upper bound (as a function of dictionary error, amount of unrolling, and sparse regularizer) on the

error between the true code z^* and the sparse latent code z_t . The λ term in the upper bound shows that the code error when we strictly perform ℓ_1 -norm based sparse coding does not go to zero.

Theorem II.1. If
$$s = \mathcal{O}^*(\sqrt{m}/\mu \log m)$$
, and the regularizer and
step size are $\lambda_t^{(l)} = \lambda = \frac{\mu_l}{\sqrt{m}} \| \mathbf{z}^* - \mathbf{z}_0 \|_1 + a_\gamma = \Omega(\frac{s \log m}{\sqrt{m}})$ and
 $\alpha^{(l)} \leq 1 - \frac{2\lambda_t^{(l)} - (1 - \frac{\delta_2^2}{2})C_{\min}}{\lambda_{t-1}^{(l)}}$, then with high probability, $|\mathbf{z}_{t,(j)}^{(l)} - \mathbf{z}_{(j)}^*| \leq \mathcal{O}(\sqrt{s} \| \mathbf{D}_j^{(l)} - \mathbf{D}_j^* \|_2 + e_{t,j}^{(l)} + \lambda)$ where $e_{t,j}^{(l)} \to 0$ as $t \to \infty$.

Given the forward pass, Thm. II.2 shows that training unrolled dictionary learning network using gradient descent with g_T^{dec} results in a contractive mapping, hence recovery of the dictionary up to a D^* neighborhood mainly characterized by the regularization parameter λ .

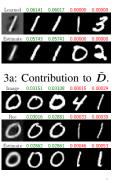
Theorem II.2. If $s = \mathcal{O}(\sqrt{m})$, $\eta = \mathcal{O}(\frac{p}{s(1-\delta_t^2/2)})$, and the regularizer λ and α are set according to above, then with high probability $\|\boldsymbol{D}_{j}^{(l+1)} - \boldsymbol{D}_{j}^{*}\|_{2}^{2} \leq (1-\psi)\|\boldsymbol{D}_{j}^{(l)} - \boldsymbol{D}_{j}^{*}\|_{2}^{2} + \epsilon_{\lambda}^{(l)}$ where $\epsilon_{\lambda}^{(l)} \coloneqq \eta \frac{2p}{s(1-\langle \boldsymbol{D}_{j}^{*} - \boldsymbol{D}_{j}^{(l)}, \boldsymbol{D}_{j}^{*}\rangle)}\lambda^{2}$.

To reduce this bias in the dictionary update, we propose to use backpropagation using the reconstruction loss $g_{\infty}^{ ext{ae-ls}}$ instead of the analytic gradient g_{∞}^{dec} . Theorem II.3 compares the gradients for appropriately large T; it shows that $g_T^{\text{ae-ls}}$ is a better estimator of the desired direction g^* .

Theorem II.3. $g_T^{ae-lasso}$ is equivalent to g_T^{dec} as $T \to \infty$ (Fig. 2a). $\|\boldsymbol{g}_T^{ae-lasso} - \boldsymbol{g}^*\|_2 \leq$ $\mathcal{O}(\|\boldsymbol{D}-\boldsymbol{D}^*\|_2+\delta^*+C_{lasso}) \text{ and } \|\boldsymbol{g}_T^{ae-ls}$ $g^* \|_2 < \mathcal{O}(\|D - D^*\|_2 + \delta^*)$, where δ^* is proportional to the biased code estimate,

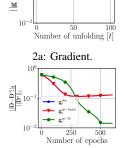
and $C_{lasso} \coloneqq \mathcal{O}(\lambda \sqrt{s})$. Hence, g_T^{ae-ls} is a better estimator of g^* (Fig. 2a), and D^* neighbourhood at which g_T^{ae-ls} is guaranteed to converge to is smaller than of the $g_T^{ae-lasso}$ and g_T^{ae-dec} (Fig. 2b).

Interpretability: We build a mathematical relation between the network weights, training data, and test reconstruction. Thm. II.4 characterizes stationary points of the trained network and proves that the dictionary interpolates the training data, i.e., $\tilde{D}_j = X(G^{-1}w_j) = \sum_{k=1}^n (G^{-1}w_j)_k x^k$ (Fig. 3a, green for high and red for low contribution). We write the reconstruction of a new example x^{j} as a linear combination of all the training examples, i.e., $\hat{x}^j = \tilde{D}\hat{z}^j = \sum_{k=1}^n \beta_k^j x^k$ where $\beta_k^j = \sum_{a=1}^n G_{ka}^{-1} \langle \tilde{z}^a, \hat{z}^j \rangle$ (Fig. 3b,



images with high contribution (green) are similar to the input image, and those with low (red) are different).

Theorem II.4. Consider $\min_{\mathbf{Z},\mathbf{D}} \frac{1}{2} \|\mathbf{X} - \mathbf{D}\mathbf{Z}\|_F^2 + \lambda \|\mathbf{Z}\|_1 + \lambda \|\mathbf{Z}\|_1$ $\|\omega_{2}\|D\|_{F}^{2}$, where $X = [x^{1}, \ldots, x^{n}] \in \mathbb{\bar{R}}^{m \times n}$ and $Z = [z^{1}, \ldots, z^{n}] \in \mathbb{\bar{R}}^{m \times n}$ $\mathbb{R}^{p \times n}$. Let \tilde{Z} be the given converged codes, then network stationary points follows $\tilde{D} = \tilde{X}G^{-1}\tilde{Z}^T$, where we denote $G := (\tilde{Z}^T\tilde{Z} + \omega I)$.



2b: Dictionary.

¹This work is presented as a talk at the Conference on the Mathematical Theory of Deep Neural Networks, 2022.

References

- [1] T. Hastie, R. Tibshirani, and M. Wainwright, *Statistical learning with sparsity: the lasso and generalizations.* CRC press, 2015.
- M. Elad, Sparse and redundant representations: from theory to applications in signal and image processing. Springer Science & Business Media, 2010.
- [3] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, "Proximal methods for hierarchical sparse coding," *The Journal of Machine Learning Research*, vol. 12, pp. 2297–2334, 2011.
- [4] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach, "Supervised dictionary learning," in *Proceedings of Advances in Neural Information Processing Systems*, vol. 21, 2009, pp. 1–8.
- [5] K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in *Proceedings of international conference on international conference on machine learning*, 2010, pp. 399– 406.
- [6] J. R. Hershey, J. L. Roux, and F. Weninger, "Deep unfolding: Model-based inspiration of novel deep architectures," *arXiv*:1409.2574, pp. 1–27, 2014.
- [7] V. Monga, Y. Li, and Y. C. Eldar, "Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing," *arXiv*:1912.10557, pp. 1–27, 2019.
- [8] R. Tibshirani, "Regression shrinkage and selection via the lasso," *Journal of the Royal Statistical Society. Series B (Methodological)*, vol. 58, no. 1, pp. 267–288, 1996.
- [9] B. Tolooshams, S. Dey, and D. Ba, "Deep residual autoencoders for expectation maximization-inspired dictionary learning," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 32, no. 6, pp. 2415–2429, 2021.
- [10] B. Tolooshams, A. Song, S. Temereanca, and D. Ba, "Convolutional dictionary learning based auto-encoders for natural exponential-family distributions," in *Proceedings of the 37th International Conference on Machine Learning*, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 9493–9503.
- [11] B. Malézieux, T. Moreau, and M. Kowalski, "Understanding approximate and unrolled dictionary learning for pattern recovery," in *Proceedings of International Conference on Learning Representations*, 2022.
- [12] I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," *Communications on Pure and Applied Mathematics*, vol. 57, no. 11, pp. 1413–1457, 2004.
- [13] T. Blumensath and M. E. Davies, "Iterative thresholding for sparse approximations," *Journal of Fourier analysis and Applications*, vol. 14, no. 5-6, pp. 629–654, 2008.