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I. INTRODUCTION

The dictionary learning problem, representing data x ∈ Rm as a
combination of a few atoms from a dictionary D ∈ Rm×p, has long
stood as a popular method for learning representations in statistics and
signal processing [1, 2, 3, 4]. The most popular dictionary learning
algorithm alternates between sparse coding and dictionary update steps.
Sparse coding has been utilized to construct neural architectures
through recurrent sparsifying encoders [5], initiating a growing
literature on constructing interpretable unrolled networks [6, 7]. We
offer the theoretical analysis of unrolled sparse coding. We address
the following challenge; the vanilla unrolled sparse coding computes a
biased code estimate; this results in a biased estimate of the backward
gradient. We reduce this bias and demonstrate unrolled interpretability.

Given x and D, the problem of recovering the sparse coefficients
z ∈ Rp is referred to as sparse coding, and can be solved through the
lasso [8] `x(D) := minz∈Rp Lx(z,D) + h(z) where Lx(z,D) =
1
2
‖x −Dz‖22, and h(z) = λ‖z‖1. The problem aims to recover a

dictionary D∗ that generates the data, i.e., x = D∗z∗ where z∗ is
sparse. Prior to unrolled networks, gradient-based dictionary learning
relied on analytic gradients. With unrolled networks, backpropagation
gained attention for parameter estimation [9, 10, 11]1.

1: Unrolled dictionary learning.
Unrolled dictionary learning is constructed as following: sparse

coding is converted into an encoder by unfolding T iterations of ISTA
(zt+1 = Φ(zt,D) = Pαλ(zt − α∇1Lx(zt,D))) with Pb(v) ,
sign(v) max(|v| − b, 0) [12, 13]. The decoder is x̂ = DzT . We
recover D∗ by backpropagated gradient (i.e., D(l+1) = D(l) −
ηg

(l)
T ) (See Fig. 1). Backpropagation through the decoder results

in the analytic gradient gdec
T , ∇2Lx(zT ,D). The gradients

gae-lasso
T , ∇2Lx(zT ,D) + ∂zT

∂D
(∇1Lx(zT ,D) + ∂h(zT )) and

gae-ls
T , ∇2Lx(zT ,D) + ∂zT

∂D
∇1Lx(zT ,D) are computed by back-

propagation through the autoencoder using the lasso and least-squares
objectives. We show how using gae-ls

T is a better gradient estimator to
recover D∗. The desired direction is g∗ , Ex∈X [∇2Lx(z∗,D)].

II. MAIN RESULTS

Assumptions: The code z∗ is at most s-sparse with the support
S∗ = supp(z∗). Given the support, z∗S∗ is i.i.d, E[z∗(j) | j ∈ S∗] = 0

and E[z∗(S)z
∗T
(S∗) | S∗] = I . D∗ is µ-incoherent with µ =

O(log (m)). ‖D∗j ‖2 = 1 and ‖D∗‖2 = O(
√
p/m), and p = O(m).

∀j ‖D(0)
j − D∗j ‖2 ≤ δ and ‖D(0) − D∗‖2 ≤ 2‖D∗‖2. D(l) is

µl-incoherent and ‖D(l)
j −D

∗
j ‖2 ≤ δl with δl = O∗(1/ log p).

Results: Thm. II.1 provides an upper bound (as a function of
dictionary error, amount of unrolling, and sparse regularizer) on the

1This work is presented as a talk at the Conference on the Mathematical
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error between the true code z∗ and the sparse latent code zt. The λ
term in the upper bound shows that the code error when we strictly
perform `1-norm based sparse coding does not go to zero.

Theorem II.1. If s = O∗(
√
m/µ logm), and the regularizer and

step size are λ(l)
t = λ = µl√

m
‖z∗ − z0‖1 + aγ = Ω( s logm√

m
) and

α(l) ≤ 1 − 2λ
(l)
t −(1−

δ2l
2

)Cmin

λ
(l)
t−1

, then with high probability, |z(l)

t,(j) −

z∗(j)| ≤ O(
√
s‖D(l)

j −D∗j ‖2 +e
(l)
t,j +λ) where e(l)t,j → 0 as t→∞.

Given the forward pass, Thm. II.2 shows that training unrolled
dictionary learning network using gradient descent with gdec

T results in
a contractive mapping, hence recovery of the dictionary up to a D∗

neighborhood mainly characterized by the regularization parameter λ.

Theorem II.2. If s = O(
√
m), η = O( p

s(1−δ2
l
/2)

), and the
regularizer λ and α are set according to above, then with high
probability ‖D(l+1)

j −D∗j ‖22 ≤ (1− ψ)‖D(l)
j −D

∗
j ‖22 + ε

(l)
λ where

ε
(l)
λ := η 2p

s(1−〈D∗
j−D

(l)
j ,D∗

j 〉)
λ2.
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2b: Dictionary.

To reduce this bias in the dictionary
update, we propose to use backpropagation
using the reconstruction loss gae-ls

∞ instead
of the analytic gradient gdec

∞ . Theorem II.3
compares the gradients for appropriately
large T ; it shows that gae-ls

T is a better
estimator of the desired direction g∗.

Theorem II.3. gae-lasso
T is equivalent to gdec

T

as T → ∞ (Fig. 2a). ‖gae-lasso
T − g∗‖2 ≤

O(‖D−D∗‖2 +δ∗+Classo) and ‖gae-ls
T −

g∗‖2 ≤ O(‖D −D∗‖2 + δ∗), where δ∗

is proportional to the biased code estimate,
and Classo := O(λ

√
s). Hence, gae-ls

T is a better estimator of g∗ (Fig.
2a), and D∗ neighbourhood at which gae-ls

T is guaranteed to converge
to is smaller than of the gae-lasso

T and gae-dec
T (Fig. 2b).

Learned 0.06141 0.06017 0.00000 0.00000

Estimate 0.05743 0.05741 0.00000 0.00000

3a: Contribution to D̃.
Image 0.03151 0.03108 0.00015 0.00029

Rec 0.03016 0.02881 0.00033 0.00039

Estimate 0.02862 0.02861 0.00046 0.00053

3b: Contribution for x̂j .

Interpretability: We build a mathe-
matical relation between the network
weights, training data, and test reconstruc-
tion. Thm. II.4 characterizes stationary
points of the trained network and proves
that the dictionary interpolates the train-
ing data, i.e., D̃j = X(G−1wj) =∑n
k=1(G−1wj)kx

k (Fig. 3a, green for
high and red for low contribution). We write
the reconstruction of a new example xj

as a linear combination of all the training
examples, i.e., x̂j = D̃ẑj =

∑n
k=1 β

j
kx

k

where βjk =
∑n
a=1G

−1
ka 〈z̃

a, ẑj〉 (Fig. 3b,
images with high contribution (green) are similar to the input image,
and those with low (red) are different).

Theorem II.4. Consider minZ,D
1
2
‖X − DZ‖2F + λ‖Z‖1 +

ω/2‖D‖2F , where X=[x1, . . . ,xn]∈Rm×n and Z=[z1, . . . , zn]∈
Rp×n. Let Z̃ be the given converged codes, then network stationary
points follows D̃ = XG−1Z̃T, where we denote G := (Z̃TZ̃+ωI).
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