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Abstract

When trained on natural image patches, the classical sparse coding model represents
visual stimuli as a linear combination of a handful of Gabor-like basis functions.
However, the filters learned by this model far overpredict well-tuned simple cell
receptive field (SCRF) profiles. A number of subsequent models have either
discarded the sparse dictionary learning framework entirely or have yet to take
advantage of the surge in deep, unrolled neural dictionary learning architectures.
The autoencoder that we use to address this problem, which maintains a natural
hierarchical structure when paired with a discriminative loss, is evaluated with a
weighted-¢; (WL) penalty that encourages self-similarity of basis function usage.
The additional constraint matches the spatial phase symmetry of recent contrastive
objectives while maintaining core ideas of the sparse coding framework, yet also
offers a promising path to describe the differentiation of receptive fields in terms of
this discriminative hierarchy in future work.

1 Introduction

Overcomplete sparse coding as a model of the primary visual cortex (V1) is a pillar of computa-
tional neuroscience (Olshausen & Field, [1997). Training on natural image patchesﬂ via a Hebbian
learning rule produces filters that are spatially localized, bandpass, and oriented to a select range of
rotation angles. These filters are similar to those observed in the mammalian cortex (Jones & Palmer;
1987), which are well-described by two-dimensional Gabor functions. However, the properties of
Gabor filters fitted to the simple cell receptive field (SCRF) estimates produced by sparse coding have
been shown to misalign with filters fitted to rhesus macaque responses to drifting sinusoidal gratings
(Ringach, [2002). In particular, the original sparse coding (SC) model overpredicts and underpredicts
the frequency of well-tuned and broadly-tuned cells, respectively. Well-tuned cells maintain several
(more elongated) subfields than the “blob-like” broadly tuned cells, as shown in Figure|[I]

A number of models have been subsequently proposed as a result. Of particular interest, (Rehn
& Sommer}, |2007) limits the number of active neurons rather than the average neural activity, which
significantly improves diversity of shapes. (Zylberberg et al.l 2011 develops a spiking network based
on synaptically local information to overcome this discrepancy.
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Hypothesizing that explicit image reconstruction is not a biologically relevant task,
proposes a novel contrastive objective, Local Low Dimensionality (LLD), that
minimizes the dimensionality of encodings of spatially local image patches relative to their global
dimensionality.

While LLD diversifies SCRF shapes compared to sparse
coding, uses deep methods to reconstruct
the brain’s perceptions of images from functional magnetic res- . 7
onance imaging data, showing the relevance of reconstructive
models of the visual cortex. In addition to past success of the
reconstructive framework updates, we therefore investigate a Figure 1: Broadly-tuned (left),
deep recurrent autoencoder architecture with additional regular- well-tuned (right) macaque SCRFs
ization constraint to enforce a similar flavor of locality: namely, (2002)
a weighted-¢; penalty (WL) that encourages latent representa-
tions to use a specialized set of local neurons. While the hierarchical setting is left to future work
by LLD, this architecture naturally learns a hierarchy of representational units when trained with an
additional discriminative loss term (Rolfe & LeCunn),[2013). The reported findings motivate the need
for spatial regularization of neurons and necessitate more precise arguments against reconstructive
frameworks like sparse coding.
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Figure 2: The weighted-¢; penalty begets more of the The general neural coding framework can
“blob-like” SCRFs that are missing from the original be formulated as:

model. 1
E(A,X):§\|Y—AX||%+S,\(X) (1)

where Y € R%*™ ig a set of n stimuli of dimension d, A € R¥>™ is a learned set of m basis
functions, X € R™*™ is a set of n latent representations of inputs, and Sy (X) is a regularization
penalty. (Rozell et al.,2007), among other advances, associates sparse coding with S (X) = ||X]|;
(columnwise). However, while neurons fire sparsely, they are also specialized to certain types of
visual stimuli in the input space. As formulated, (I)) makes no explicit assumptions about the structure
of this sparsity in neural latent space.

Nonetheless, the filters learned on natural image patches are quantitatively well-described (in a
least-squares sense) by two-dimensional Gabor functions for (x,y) € R?, where:
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and (z',y’) are obtained from a rotation of angle 6 and translation (g, yo) for a total of 8 parameters.
In our experiments, these are fit through a gradient descent scheme that alternates over the parameters
while holding the others fixed. The filters are fit on N = 100,000 randomly extracted patches
(of varying sizes, as explored in the Appendix) on the original Sparsenet data (Olshausen & Field,
[1997). We also began to fit on the CIFAR10 dataset (Krizhevsky et al 2010) in anticipation of
future discriminative tasks. While the sparse coding filters are well-described by Gabor filters in a
least-square error sense, the learned Gabor parameters misalign with primate data as shown in Figure

3).
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As discussed in the introduction, many different approaches can be taken to address this problem.
Specifically, we focus on local computation enforced via the objective function. LLD discards
the reconstruction loss and encodes natural image stimuli to local ensembles of image patches

{(xgl), e ,x,(ll)), cee (ng), e ,X%B))}, with superscipts denoting local ensembles and subscripts



denoting ensemble members. LLD is a shallow network where sZ(-j ) = ReLU(WxEj )+ b). A
covariance matrix ZI(j) = Cov ([s(lj), .. ,sg)]) is formed on the j'" ensemble. The LLD loss is

formulated as:
B, [ir(S))]

LW, b) = tr (3)

3
where 3 is the response covariance to all patches in the batch. The model is able to better replicate
the diversity of SCRF shapes, which exhibit a phase symmetry in rhesus macaque data.

0.40 040 040
035 035 035
030 030 030
=UZ§ 025 025
Z020 020 020
£
0.15 0.15 0.15
0.10 0.10 0.10
0.05 005 005 i i
000 . wn wm I . =
2 000" 02 10 12 14 16

0000 02 04 14 16 09000 02 1214 16 04 06 08

06 08 10 06 08 10
Spatial Phase (Radians) Spatial Phase (Radians) Spatial Phase (Radians)

(a) Neural Data (b) LLD (c) SC

Figure 3: Gabor spatial phases of rhesus macaques are largely bimodal, but SC phases are highly
skewed due to the absence of “blob-like” fields in Figures 1 and 2.

3 Locality-Constrained Reconstructive Frameworks

Can additional structure be incorporated into the reconstructive framework to better match the
experimental data? This question may be addressed through additional regularization to encourage
local representation, taking inspiration from concepts of locality used in manifold learning, especially
spectral methods and locally linear embedding (Roweis & Saul, [2000). The weighted-¢; constraint
penalizes neural encoding activity based on the distance between the natural image stimuli and the
basis functions a;, where:

m
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Here, neurons are specialized to certain types of input as large neural energy requirements
will limit the strength of the firing rate z;. In contrast to the original sparse coding alternating
minimization scheme, this objective is solved through algorithm unrolling (Monga et al.}2020)) into
a deep recurrent autoencoder, which projects the encodings onto the probability simplex through a
nonlinearity Pg described below.

Mathematically, one might recognize the weighted-¢; penalty as a Laplacian quadratic form
of a graph. Which Laplacian and graph, specifically? This can be formulated as a bipartite graph
Laplacian on the m + n basis functions and inputs (vertices), whose edge weights between the y:*
and agh vertices are z;;, and O otherwise (i.e. no self-loops). Thus, the stimuli can be easily clustered
by performing an eigendecomposition on this constructed Laplacian. In a discriminative classification
task, this will allow for a more rigorous analysis of a given neuron’s sensitivity to various class types.

One potential criticism of the autoencoder architecture used here (and deep learning in general)
is the lack of plausibility for the back-propagation algorithm being implemented by the brain (Bengio
et al., 2016). While this criticism is fair, the presented results do not attempt to form a one-to-one
map with computation in V1, but rather attempt to rectify a non-plausible learning mechanism with
geometric regularization and a procedure that learns hierarchical representations. Shallow networks
have long been commensurate with local, Hebbian update rules, while the expressivity associated
with depth is indeed one of the more enigmatic features of modern neural networks and their high
performance on many different tasks. However, while most deep architectures are “information soups”
where the parameters do not necessarily maintain any particular meaning, the weights of the unrolled
network correspond exactly with A and X, lending an interpretability aspect to the architecture not
present for most of the top-performing networks today.
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Figure 4: The unrolled architecture that learns A and X, where Ps = ReLU (x + b (x) - 1) and
Q(¥) = X epm |ly — a;]I? is a quadratic neuron. See appendix for details (Tasissa et al., 2021).

We have also explored an iterative Laplacian scheme (Kodirov et al.,[2015)) where:
SLAP(X) = r(XGXT) 5)

for a pre-constructed (or iteratively updated) graph Laplacian G. The penalty (3) is typically used
in addition to an ¢; penalty. Here, however, G is built on the stimuli space to preserve local
pairwise distances in latent space, whereas the weighted-¢; penalty essentially interpolates the
manifold in R? with the set aj¢c[m) and then uses as few basis functions as possible. The Lapla-

cians are fundamentally different. Thus S )%AP only constrains firing rates, while SXVL constrains
both the firing rates and the learned basis functions, which we refer to as “spatial regularization.”
In our experiments, we find that
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Figure 5: Spatial phases of the weighted-¢; (WL) autoen- 4 Conclusion

coder. Locality-regularization is able to shift the original

sparse code distribution of spatial phases The improved spatial symmetry
warrants further exploration into deep
recurrent autoencoders (with varying

flavors of locality constraints) as a model of the primary visual cortex. Is explicit image reconstruction

biologically plausible? This assumption may be loosened in future work by considering a distribution

of codes instead of a point estimate (Park & Pillow} 2020). However, given previous work

showing the intrinsic hierarchical structure of discriminative recurrent sparse autoencoders

2013), the findings presented here offer a potential path towards rigorously describing the

differentiation of receptive fields that match experimental data.
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A Appendix: Unrolled Network and Training

The spatial phase plots are obtained through a three-step process:

1. Train the (unrolled) network on the original Sparsenet data (Olshausen & Field, |1997) image
patches

2. Using the learned basis functions, obtain the simple cell receptive field estimates through
spike-triggered averaging

3. Fit the 2D-Gabors to the the receptive field estimates

For step (1):

Encoder:
Let AZ(-?) ~N(0,1) and x(9 =% =0

Then, given A and y, we solve for x* € argmin, £(A,y, x) by projected gradient descent:
x(HD) = pg ()'i(t) — aVxL(A,y, & )) ©)
g+ = x (D) 4 (0 (x (D) _ (1) )

for t € [T)]. In the code, we run T' = 15 iterations of projected gradient descent (similar to FISTA).
We have @ = 0 pax (A)~2 and 7 is given by:

W _n -1 ey — LEVIEY )
2 b

7T e =0 ®
The gradient of the weighted-¢; penalty is given by:
VL (A y,x) = AT(Ax —y) + A |ly — ayll’ey ©)

=1

We also explored a Laplacian penalty S£4F(X) = ur(XGX™) to promote locality. The gradient of
this penalty is most clean when written in a batch setting:

Vxerma LT (A Y, X) = AT(AX — Y) + A (Ipwp + X(GT +G)) (10)

where D — A = G € R®*? is a graph Laplacian built from a binary XNN graph on the inputs Y, xs;
that is, the edge weight between y; and y; is 1 if ¢, j are k-nearest neighbors and O otherwise. We
choose k£ = 4 in our experiments, though more rigorous analysis is required to determine the effect
of this hyperparameter.

Decoder:

The decoder is a simple linear readout, where given A and x, § = Ax

Training details:

We used one GeForce GTX 1080 Ti GPU for training. However, the computational requirements are
fairly modest. All of the models can be ran without a GPU, even with a batch size of 16 — 32 with
several hundred filters in at most in 1 — 2 hours on a 2.6 GHz 6-Core Intel Core i7 PC with 32GB of
RAM.

Because we use the same dataset, we also used the same variance normalization procedure described
in the original paper (Olshausen & Field, [1997) to tune A, which is easily the most important
hyperparameter. In our experiments, we found that the weighted-¢; network was fairly robust to
changes in A even over several orders of magnitude, while the original Sparsenet algorithm only
produces Gabor-like filters over a small neighborhood around A ~ 0.01. Below, for example, we
show filters for A = 0.001 where each model is ran until convergence. The unrolled network looks



far more like the results in Figure 2 (where A = 0.01) while Sparsenet is not able to learn its classic
filters (holding all else constant).
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Figure 6: The Sparsenet algorithm (left) seems less robust to changes in A compared to the unrolled
network (right).



B Appendix: Discriminative Task on Whole Images

Much to our surprise, the weighted-¢; loss and unrolled architecture also seems to learn Gabor-
like filters even on whole (albeit small) images in addition to random image patches. Below, we
include a set of filters learned on CIFAR10, for example. Although these filters are less clean than
those learned on the original Sparsenet data (Olshausen & Field, [1997), this offers a path to training
an end-to-end discriminative classification task in the spirit of (Rolfe & LeCunnl [2013). How do the

categorical and part of units of that paper align with the well-tuned and broadly-tuned cells of the
visual cortex, if at all?
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Figure 7: Learned filters for A = 0.01 when training the weighted-£; loss on CIFAR10. While these
images are 32 x 32, the receptive fields still appear to be quite localized in their sensitivity.
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Figure 8: As A — oo, the filters essentially become mean-prototypes of the various classes in CIFAR,
showing that the unrolled weighted-#; can be interpreted as a soft k-means objective as well.
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